Super-State Automata and Rational Trees

نویسندگان

  • Frédérique Bassino
  • Marie-Pierre Béal
  • Dominique Perrin
چکیده

On introduit la notion d'automate des super-etats construit a partir d'un autre automate. Cette construction est utilis ee pour r esoudre un probl eme ouvert relatif aux suites enum eratives des feuilles d'arbres rationnels. On prouve qu'une suite N-rationnelle s = (s n) n0 d'entiers positif qui satis-fait l'in egalit e de Kraft : P n0 s n k ?n 1 est la suite enum erative selon la hauteur des feuilles d'un arbre rationnel k-aire. Ce r esultat avait et e con-jectur e, mais n' etait connu que dans le cas de l'in egalit e stricte. On utilise ensuite ce r esultat pour caract eriser les s eries qui les s eries enum eratives des noeuds d'un arbre rationnel k-aire. On donne egalement de nouvelles preuves, bas ees sur la notion d'automate des super-etats, du r esultat suiv-ant relatif aux suites enum eratives des nnuds dans un arbre : une suite N-rationnelle t ayant une repr esentation lin eaire primitive, telle que t 0 = 1, 8n 1; t n kt n?1 et dont le rayon spectral est strictement sup erieur a 1=k est la suite enum erative selon la hauteur des nnuds d'un arbre k-aire rationnel. Ce r esultat reste vrai si on remplace l'hypoth ese de primitivit e par le fait que la s erie admet une racine dominante. Abstract We introduce the notion of super-state automaton constructed from another automaton. This construction is used to solve an open question about enu-merative sequences of leaves of rational trees. We prove that any N-rational 1 sequence s = (s n) n0 of nonnegative integers satisfying the Kraft inequality P n0 s n k ?n 1 is the enumerative sequence of leaves by height of a k-ary rational tree. This result had been conjectured and was known only in the case of strict inequality. We then use this result to completely characterize the series that are the enumerative sequence of nodes in a k-ary rational tree. We also give new proofs, based on the notion of super-state automata, to the following known result about enumerative sequences of nodes in trees: any N-rational series t that has a primitive linear representation, such that t 0 = 1, 8n 1; t n kt n?1 , and whose convergence radius is strictly greater than 1=k, is the enumerative sequence of nodes by height in a k-ary rational tree. The same result holds if …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Super - State Automata and Rational

We introduce the notion of super-state automaton constructed from another automaton. This construction is used to solve an open question about enumerative sequences in rational trees. We prove that any IN-rational sequence s = (sn) n0 of nonnegative integers satisfying the Kraft inequality P n0 snk ?n 1 is the enumerative sequence of leaves by height of a k-ary rational tree. This result had be...

متن کامل

Brzozowski Algorithm Is Generically Super-Polynomial Deterministic Automata

We study the number of states of the minimal automaton of the mirror of a rational language recognized by a random deterministic automaton with n states. We prove that, for any d > 0, the probability that this number of states is greater than n tends to 1 as n tends to infinity. As a consequence, the generic and average complexities of Brzozowski minimization algorithm are super-polynomial for ...

متن کامل

A Spectral Approach for Probabilistic Grammatical Inference on Trees

We focus on the estimation of a probability distribution over a set of trees. We consider here the class of distributions computed by weighted automata a strict generalization of probabilistic tree automata. This class of distributions (called rational distributions, or rational stochastic tree languages RSTL) has an algebraic characterization: All the residuals (conditional) of such distributi...

متن کامل

On Probability Distributions for Trees: Representations, Inference and Learning

We study probability distributions over free algebras of trees. Probability distributions can be seen as particular (formal power) tree series [BR82; EK03], i.e. mappings from trees to a semiring K. A widely studied class of tree series is the class of rational (or recognizable) tree series which can be defined either in an algebraic way or by means of multiplicity tree automata. We argue that ...

متن کامل

Walking automata in the free inverse monoid

In this paper, we study languages of birooted trees or, following Scheiblich-Munn’s theorem, subsets of free inverse monoids. Extending the classical notion of rational languages with a projection operator that maps every set of birooted trees to the subset of its idempotent elements it is first shown that the hierarchy induced by the nesting depth of that projection operator simply correspond ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998